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ABSTRACT  

Differential Geometry of fibred spaces with projectable geometrical objects there has tremendous 

manifestations in Mathematics.  

We shall study the infinitesimal on the cross-section of cotangent bundle CT(M) by complete lift, 

horizontal lift and intermediate lift on CT(M) of an affine connection ∇ on M. Moreover, we shall 

also study the infinitesimal variation of the induced metric tensor on the cross-section of CT(M) by 

Tondeur-sato metric gT on the co-tangent bundle CT(M) of M. 
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INTRODUCTION 

Let M be an n-dimensional differentiable manifold of class C∞ and 𝐶𝑇𝑃(M): the co-tangent 

space at a point P in M. i.e., the set of all covariant vectors of M at P. Then the set 

CT(M) = 
𝑈

𝑃 ∈ 𝑀
𝐶𝑇

𝑃(𝑀)
 

is defined as co-tangent bundle over the manifold M. Any point ∅ of CT(M) such that P∈ 𝑪𝑻
𝑷(𝑴)   is a 

convector at P in M. 
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The mapping 𝜋: CT(M) → M is a projection map from CT(M) on to M. 𝜋-1(P) = 𝐶𝑇
𝑃(𝑀)

is called 

the fibre over P∈M. 

COMPLETE LIFTS OF TENSOR FIELDS TO CT(M) : 

Suppose that there is a given vector field X in M. with components Xh. The complete lift Xc 

of X on M to CT(M) is a vector field on CT(M) with components (127). 

 𝑥𝐶: [−𝑃𝛼𝜕ℎ𝑋𝛼
𝑋ℎ

] 

With respect to the co-ordinate system (xh, Ph). 

Let F be a tensor field of type (1, 1) on M with components  𝐹𝑖
ℎand let it be complex 

structure on M. then, the complete lift FC of F on M to CT(M) is a tensor field of type (1,1) on CT(M) 

with components 

𝐹𝐶: [
𝐹ℎ                            0

𝑃𝛼(𝜕𝑖𝐹ℎ
𝛼 − 𝜕ℎ𝐹𝑖

𝛼)      𝐹ℎ
𝑖] 

THEOREM 1:  

The necessary and Sufficient condition that on infinitesimal variation of the cross-section of 

co-tangent bundle CT(M) associated with induced metric tensor *𝐺̅ij due to complete lift ∇C on CT(M) 

to be isometric is that 

∇iVj+∇jVi – 2(∇i∇jVk+𝑉𝛼𝑅𝑘𝑖𝑗
𝛼 )Vk =0 

PROOF :  

Assume that the infinitesimal variation of the cross-section of CT(M) endowed with metric 

*𝐺̅ij be isometric the 𝛿*𝐺̅ij =0. As a result of (4.9.15), we have 

∇iVj+∇jVi – 2(∇i∇jVk+𝑉𝛼𝑅𝑘𝑖𝑗
𝛼 )Vk =0 

Conversely if ∇iVj+∇jVi – 2(∇i∇jVk+𝑉𝛼𝑅𝑘𝑖𝑗
𝛼 )Vk =0 

 [∇iVj+∇jVi – 2(∇i∇jVk+𝑉𝛼𝑅𝑘𝑖𝑗
𝛼 )Vk] =0 
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G being infinitesimal 

 𝛿*𝐺̅ij = 0:     the variation of the cross-section of the cotangent bundle CT(M) endowed with 

metric induced by ∇C is isometric. 

THEORM 2:  

The necessary and sufficient condition for a normal variation of the cross-section of CT(M) 

associated with the induced metric tensor *𝐺̅ij due to that complete lift ∇C on CT(M)  to be isometric 

is that  

∇i∇jVk+𝑉𝛼𝑅𝑘𝑗𝑖
𝛼  = 0 

i.e, the cross-section of  CT(M) by the induced metric tensor *𝐺̅ij is geobesic with respect to the 

normal variation. 

PROOF :  

when Vα =0, i.e., when the variation vector Vα is normal to the cross-section CT(M),then the 

variation is called normal from the result that the normal variation of the cross-section CT(M) will be 

isometric iff  

∇i∇jVk+𝑉𝛼𝑅𝑘𝑖𝑗
𝛼  = 0 

THEOREM 3 :  

In order for a variation of the cross- section of CT(M)associated with the  induced metric 

tensor *𝐺̅ij due to the completed lift ∇C on CT(M) to be conformal (homothetic), it is necessary and 

sufficient then  

∇𝑖∇𝑗 + ∇𝑗𝑉𝑖 − 2(∇𝑖∇𝑗𝑉𝑘 + 𝑉𝛼𝑅𝑘𝑗𝑖
𝛼 )𝑉𝑘 = 2ʎ*𝐺̅ij 

Where ʎ being a certain function (constant).  
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PROOF : 

A variation of the cross-section of CT(M) associated with the induced metric tensor *𝐺̅ij due to 

the complete lift ∇C on CT(M) is said to de conformal (homothetic) iff  

𝛿*𝐺̅ij = ʎ*𝐺̅ij 

Consequently,  

from the result  

𝛿∗𝐺̅ij = ∇𝑖∇𝑗 + ∇𝑗𝑉𝑖 − 2(∇𝑖∇𝑗𝑉𝑘 + 𝑉𝛼𝑅𝑘𝑗𝑖
𝛼 )𝑉𝑘 

we reach the conclusion that 

2ʎ*𝐺̅ij = ∇𝑖∇𝑗 + ∇𝑗𝑉𝑖 − 2(∇𝑖∇𝑗𝑉𝑘 + 𝑉𝛼𝑅𝑘𝑗𝑖
𝛼 )𝑉𝑘   

    2ʎ*𝐺̅ij/G = ∇𝑖∇𝑗 + ∇𝑗𝑉𝑖 − 2(∇𝑖∇𝑗𝑉𝑘 + 𝑉𝛼𝑅𝑘𝑗𝑖
𝛼 )𝑉𝑘 

Where 2ʎ/𝛾 to either a certain function or a constant. 

CONCLUSION: 

Finally we say that infinitesimal variation of the metric tensor induced on CT(M) by 

complete lift ∇𝐶 of an affine connection ∇ on M. 
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